Learning Perceptual Causality from Video

Amy Fire and Song-Chun Zhu Center for Vision, Cognition, Learning, and Art UCLA

Ideally: Learn Causality from Raw Video

Inference Using Learned Causal Structure

- Answer why events occurred
- Joint STC: Infer misdetections and hidden objects/actions
- Infer triggers, goals, and intents

But...

(generally)

SO...WHERE ARE WE NOW?

Vision Research and Causal Knowledge

- Use pre-specified causal relationships for action detection
 - E.g., PADS (Albanese, et al. 2010)
 - Model Newtonian mechanics (Mann, Jepson, and Siskind 1997)
- Use causal measures to aid action detection
 - E.g., Prabhakar, et al. 2010
- Use infant perceptions of motion to learn causality
 - Using cognitive science (Brand 1997)
- Needed: Learn causality from video, integrating ST learning strategies at pixel level

Causality and Video Data: Often Disjoint

- Learning Bayesian networks
 - Constraint satisfaction (Pearl 2009)
 - Bayesian formulations (Heckerman 1995)
 - Intractable on vision sensors
- Commonsense reasoning (Mueller 2006) first order logic.
 - Do not allow for ambiguity/probabilistic solutions
- MLNs (Richardson and Domingos 2006)
 - Intractable
 - Used for action detection (Tran and Davis 2008)
 - KB formulas not learned

MOVING FORWARD: OUR PROPOSED SOLUTION

Cognitive Science as a Gateway: Perceptual Causality

- Causal Induction from Observation in Infancy
 - Agentive actions are causes (Saxe, Tenenbaum, and Carey 2005)

- Co-occurrence of events and effects (Griffiths and Tenenbaum 2005)

		Action	¬Action
cr:	Effect	C 0	C ₁
	⊐Effect	<i>C</i> ₂	C ₃

- Temporal lag between the two is short (Carey 2009)
- Cause precedes effect (Carey 2009)
- Note: NOT the same as necessary and sufficient causes

MODIFIED GOAL: LEARN AND INFER PERCEPTUAL CAUSALITY

What are the effects? Fluent changes.

- Fluents are time-varying statuses of objects
 - Mueller Commonsense Reasoning 2006

What are the causes? Actions.

And-Nodes Compose Single Causes (multiple sub-actions)

Or-Nodes Give Alternative Causes

Probabilistic Graphical Representation for Causality

And-Or Graph

Causal AOG

Connecting Temporal to Causal and Spatial

Grounding on Pixels: Connecting S/T/C-AOG

Preliminary Theory

LEARNING PERCEPTUAL CAUSALITY

Principled Approach: Information projection

 $KL(f \parallel p) = KL(f \parallel p_{+}) + KL(p_{+} \parallel p)$ $\max \notin KL(f \parallel p) - KL(f \parallel p_{+}) \notin = \max KL(p_{+} \parallel p)$

DellaPietra, DellaPietra, Lafferty, 97 Zhu, Wu, Mumford, 97

Learning Pursuit: Add Causal Relations

• Model Pursuit

$$p_0 \to p_1 \to \ldots \to p \to p_+ \to \ldots \to p_k \approx f$$
 (On ST-AOG)

$$p_{+}(pg) = \frac{1}{z_{+}} p(pg) \exp\left(-\langle \lambda_{+}, \mathbf{cr}_{+} \rangle\right)$$

cr	Effect	- Effect
Action	Co	c_2
- Action	c_1	c_3

- Proposition 1: Find parameters
 - Model formed by min KL $(p_+ || p)$, matching statistics

$$E_{p_{+}}\left(\mathbf{cr}_{+}\right) = E_{f}\left(\mathbf{cr}_{+}\right) \qquad /_{+,i} = \log \overset{\mathfrak{A}}{\underset{e}{\circ}} \frac{h_{i}}{h_{0}} \times \frac{f_{0}}{f_{i}} \overset{\ddot{o}}{\underset{e}{\circ}}$$

 h_i is c_i under p f_i is c_i from f

• Proposition 2: Pursue **cr**.

$$\mathbf{cr}_{+} = \operatorname*{argmax}_{\mathbf{cr}} KL(p_{+} || p) = \operatorname*{argmax}_{\mathbf{cr}} KL(\mathbf{f} || \mathbf{h})$$

Selection from ST-AOG

Performance vs. TE

Performance vs. Hellinger χ^2

Increasing Misdetections (Simulation)

STC-Parsing Demo

Looking Forward:

- Finish learning the C-AOG
- Increase reasoning capacity of the C-AOG
- Integrate experiment design