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Abstract

Computer vision and artificial intelligence research has
long danced around the subject of causality: vision re-
searchers use causal relationships to aid action detec-
tion, and Al researchers propose methods for causal in-
duction independent of video sensors. In this paper, we
argue that learning perceptual causality from video is
a necessary step for understanding scenes in video. We
explain how current object and action detection is suf-
fering without causality, and we explain how current
causality research is suffering without grounding on raw
sensors. We then go on to describe one plausible solu-
tion for grounding perceptual causality on raw sensors.

Applying causal knowledge to vision research provides a
much deeper level of understanding than considering actions
and objects independently. Causal understanding enables
joint spatial-temporal-causal inference (allowing causal in-
formation to connect spatial and temporal domains). With
joint inference, it becomes possible to infer misdetected and
hidden objects and actions, along with an agent’s state of
mind, intents, and goals.

To understand the depth of how causality can be used,
imagine a scene where an agent flips a switch and a light
turns on. The light switch itself is hard to detect. However,
causality bridges the gap between the spatial and tempo-
ral detections of the light turning from off to on and the
agent approaching the wall (Figure 1(b-c)). We can then use
causality to infer with high probability that the object on the
wall is the light switch and that the agent was performing
the action of turning the light on, even when the switch is
occluded, not otherwise detectable, or misdetected.

Further, we can assume the agent turned the light on be-
cause he desired it thus. Knowing that the light was initially
off, an observer could infer that an agent would most likely
turn it on upon entering the room.

Under the goal-driven stance taken by cognitive science
researchers (Csibra and Gergely 2007), the agent’s action
occurred because he wanted to change some facet of the
world. Both the agent’s intent and the previous state of the
world are preconditions for the causing action, and both can
be inferred once the causal connections are understood.
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Watching the agent next move to a drinking fountain and
take a drink, an observer can infer that the agent was thirsty
because thirst is a common trigger for drinking. After the
agent moves from the fountain, the observer can infer that
the agent is most likely sated, having satisfied his thirst.

By connecting preconditions, trigger conditions, actions,
and effects over time, one can infer the most probable con-
sistent explanation (Figure 1(d)), filling in missing values
over the course of the video.

Causality completes many of the missing detections from
the scene by connecting states of the world and agent ac-
tions. Most humans use a simplified causal model when
answering questions. When asked what caused the light to
turn on in the example presented, humans will identify the
agent’s action alone—ignoring all the other necessary con-
ditions for the effect such as working electrical power and
the switch being connected to the light (Mackie 1965).

The learning of causality is largely missing from the vi-
sion literature. We argue that this learning can be accom-
plished from video by building on current research in cog-
nitive science, using the explanations that humans volunteer
as a basis. Specifically, it is possible to:

1. Learn perceptual causality, acquiring the knowledge of
causal relationships in the world as humans do.

2. Infer instances of perceptual causality (jointly with spatial

and temporal inference), using the learned causal knowl-
edge to identify instances in video.

Perceptual Causality

As humans observe their world, they form conclusions about
causal relationships, linking states of the world to perceived
causing conditions. Cognitive scientists recognize that even
infants are equipped with a notion of perceptual causality,
able to draw causal conclusions from observations based
on temporal spacing and an innate understanding of agency
(Carey 2009). It is this type of causality that we argue is
learnable from video.

A starting place for vision research to acquire perceptual
causality is to examine the connection between actions and
fluents. A fluent is defined in the commonsense-reasoning
literature as an object status that specifically varies over time
(Mueller 2006). For example, a light’s fluent takes the values
“on” and “off” over time as the light turns on and off.
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Figure 1: An example of the inference that is possible by using causality. a) Sample video input. b) A possible parsing of the
video attainable using only the spatial and temporal domains, without causal knowledge. Actions are parsed from a hierarchy,
using the Spatio-Temporal And-Or Graph (Pei, Jia, and Zhu 2011). ¢) A possible parsing attainable with causal knowledge. d)
The full explanation (filling in the agent’s thirst) over the course of the video is attainable with causal knowledge over time.

For a typical, functioning light, it is an agent’s actions that
dictate the light’s fluent value through a causal connection.
Humans perceive the agent flipping the switch as causing the
light to go on or off, even though there are many necessary
conditions as well.

The importance that humans place on agentive action
in determining causes is one key in acquiring perceptual
causality. Once perceptual causality is learned from video,
it can be used for the many inference tasks discussed in the
beginning.

Vision Research and Causal Knowledge

A complete integration of causal knowledge with detection
systems for objects and actions is missing from the vision
literature. Current works tend to study object fluents inde-
pendently of causing actions.

Spatial co-occurrence in a single frame enables detection
of objects and object fluent values in a scene from the raw
sensor data of an image (Tu et al. 2005). However, as these
rely only on single images (not video with actions being per-
formed), there is necessarily a lack of causal understanding
integrating actions and fluents.

Some researchers have used causal relationships together
with temporal co-occurrence for action recognition (Al-
banese et al. 2010), focusing on high-level descriptions of
the video, but these works do not attempt to learn causality.
Following the causal connections granted by physics, New-
tonian mechanics have also been used to distinguish actions
(Mann, Jepson, and Siskind 1997).

Recently, Prabhakar et al. used causal measures to learn
patterns of repeated actions, identifying visual words as
point processes (2010). Their method relates the low-level
visual events using Granger causality, allowing the unsu-
pervised identification of independent sets of these events.
However, their method does not learn, nor infer, causality.

Advancing in the direction of cognitive science and per-
ceptual causality, Brand borrows from infants’ perceived im-
plications of motion (1997). Encapsulating these implica-
tions in a grammar, Brand is able to provide the “gist” of
a video using detected blobs. One of the main drawbacks to
this work, however, is that the grammar is not learned.

None of these approaches to temporal analysis begin to
approach causality in a way that allows it to be learned from

video. A viable manner of learning causality from video data
will integrate with both spatial and temporal learning strate-
gies at the pixel level to provide a coherent solution.

Causality and Video Data

Learning causality in artificial intelligence, on the other
hand, usually amounts to traditional causal induction as done
by constraint satisfaction (Pearl 2009) or Bayesian formula-
tions (Heckerman 1995). These methods are intractable to
ground on vision sensors. Even using these systems atop
mid-level visual words is computationally infeasible when
considering the vast domain of observable causal relations.

Causal inference in commonsense reasoning is usually
solved by first-order logic (Mueller 2006). However, these
deductive methods do not allow for probabilistic solutions,
which are needed in computer vision to allow for ambiguity
given that detections are often unreliable.

Markov logic networks (Richardson and Domingos 2006)
relax the strictness of first-order logic by placing a Markov
random field atop the first-order logic. They were applied
to the task of action detection (Tran and Davis 2008), but
the knowledge base formulas used for the logic were not
learned. Further, Markov logic networks are solved with
Gibbs samplers and are intractable for general inference
from low-level vision sensors.

The theories for learning and inferring causality that have
been developed in artificial intelligence are insufficient for
the task of learning from video. Even though perceptual
causality lacks the accuracy of causal induction, it can still
provide valuable information.

Joining Vision and Causality

Humans learn perceptual causality through daily observa-
tion by internally measuring co-occurrence of events and
effects (Griffiths and Tenenbaum 2005). Research of in-
fants shows that, in pursuing causal knowledge, this co-
occurrence is restricted to events where the temporal lag be-
tween cause and effect is short (Carey 2009), cause precedes
effect (Carey 2009), and agentive actions are causes (Saxe,
Tenenbaum, and Carey 2005).

Analogous observation for a computer comes through
video, and to begin learning perceptual causality, the com-
puter must examine this co-occurrence, similarly restricted.



Beginning with a vision system that detects fluents and ac-
tions from video, this method can learn causality from video
in an unsupervised manner. Further, by using the same mea-
sure for co-occurrence to learn objects and actions from low-
level sensors as used for learning perceptual causality, we
can provide a principled approach to learning (Fire and Zhu
2013).

To represent causal knowledge, a grammar model is
needed (Bayesian networks lack their expressive power)
(Griffiths and Tenenbaum 2007). Grammar models are em-
bodied graphically in the And-Or Graph. The Causal And-
Or Graph (pictured in Figure 2) represents a grammar of
causality: And-nodes group necessary conditions, and Or-
nodes provide alternate causes. Arrows point from causes to
effects. The Causal And-Or graph creates another layer of
hierarchy atop spatial and temporal grammar models, which
are grounded on raw sensors.
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Figure 2: A simple Causal And-Or Graph for the light status.
The light can be “on” because an agent flipped the switch
(changing the light from “off” to “on”), or because the light
was already “on” and no change-inducing action occurred
(shown with ag1). On the lowest level pictured here, the pho-
tos for the actions represent And-nodes comprising of rela-
tions for action detection. Similarly for the light “off™.

Discussion

In vision research, one of the main goals is for the com-
puter to understand the images and videos. Complete un-
derstanding is important for applications such as situation-
ally aware robots and intelligent video-surveillance systems.
Causal knowledge is important to that understanding.

The task of acquiring causal knowledge is a challenging
one. Detection of causal relationships relies on the accurate
detection of both causes and effects. Hand-labeling static ob-
jects in a single frame of the video can greatly improve de-
tection. Further, specifying dictionaries of bottom-level flu-
ents and actions can simplify the search space.

As a starting point, we propose to examine the perceptual
causal link between actions and fluents by examining co-
occurrence subject to “commonsense” heuristics. The per-
ceptual causal knowledge acquired enhances the computer’s
understanding of video, adding an explanation of why flu-
ents change (because an agent’s action changed them) and

why actions are most likely performed (to change fluents
under the goal-driven view of the human mind).
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